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This work presents a multi-dimensional cell-centered unstructured finite volume scheme
for the solution of multimaterial compressible fluid flows written in the Lagrangian formal-
ism. This formulation is considered in the Arbitrary-Lagrangian–Eulerian (ALE) framework
with the constraint that the mesh velocity and the fluid velocity coincide. The link between
the vertex velocity and the fluid motion is obtained by a formulation of the momentum
conservation on a class of multi-scale encased volumes around mesh vertices. The vertex
velocity is derived with a nodal Riemann solver constructed in such a way that the mesh
motion and the face fluxes are compatible. Finally, the resulting scheme conserves both
momentum and total energy and, it satisfies a semi-discrete entropy inequality. The
numerical results obtained for some classical 2D and 3D hydrodynamic test cases show
the robustness and the accuracy of the proposed algorithm.

� 2008 Elsevier Inc. All rights reserved.
1. Introduction

The main feature of Lagrangian numerical methods lies in the fact that the motion of the fluid is intrinsically linked to the
geometrical transformation that follows the fluid path. This ensures that there is no mass flux crossing the boundary of the
control volume moving with the fluid. Thus, interfaces in multi-dimensional flows are sharply resolved. In this framework,
one has to discretize not only the gas dynamics conservation laws but also the point motion in order to move the mesh.

At the discrete level, the most natural framework employs staggered-grid hydrodynamics (SGH). The term staggered re-
fers to spatial centering in which position, velocity and kinetic energy are centered at points, while density, pressure and
internal energy are within cells. The one-dimensional scheme was developed by the pioneering work of von Neumann
and Richtmyer [32] and its two-dimensional extension was achieved by Wilkins [33]. In its original version this finite
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difference scheme has some drawbacks related to conservation loss, control of entropy production via artificial viscosity and
spurious grid distortion. Many improvements have been made in order to increase the accuracy and the robustness of SGH
discretization. In [11], artificial grid distortion and hourglass-type motions are under control by means of Lagrangian sub-
zonal masses and pressures. The construction of a compatible SGH discretization [9] leads to a scheme that conserves total
energy. Moreover, this compatible derivation allows for the specification of forces such as those derived from an artificial
viscosity or sub-zonal pressures. Finally, the discretization of artificial viscosity has been considerably improved: first by
introducing formulations for multi-dimensional shock wave computations [8] and then by deriving a tensorial artificial vis-
cosity with a mimetic finite difference discretization [6]. The three-dimensional extension of the SGH discretization can be
found in [10] and also in [5].

In [27,26], the variational multi-scale stabilized (VMS) approach was applied in finite element computations of Lagrang-
ian hydrodynamics. In that case, a piecewise linear continuous approximation was adopted for the variables. The case of Q1/
P0 finite element is investigated in [28] wherein the kinematic variables are represented using a piecewise linear continuous
approximation while the thermodynamic variables utilize a piecewise constant one. To capture shock waves, VMS method
needs a tensorial artificial viscosity. It shows promising results for two- and three-dimensional shock computations. How-
ever, it must be noted that it cannot properly preserve interfaces in the case of multimaterial flows.

An alternative to the previous discretizations is to use a cell-centered discretization in which all the physical variables
(density, momentum, pressure, total and internal energy) are within the cell. The fluxes and the node displacement are both
computed using Riemann problems at interfaces. This method for Lagrangian gas dynamics in one dimension, has been first
introduced by Godunov, see [16] and [25]. Its two-dimensional extension has been performed during the 80s [2,15]. This
scheme is a cell-centered finite volume scheme on moving structured or unstructured meshes. It is constructed by integrat-
ing directly the system of conservation laws on each moving cell. The flux across the boundary of the cell is computed by
solving exactly or approximately a one-dimensional Riemann problem in the direction normal to the boundary. The main
problem with the two-dimensional version lies in the fact that the node velocity required to move the mesh cannot be di-
rectly calculated. In [2], the node velocity is computed via a special least squares procedure. It consists in minimizing the
error between the normal velocity coming from the Riemann solver and the normal projection of the vertex velocity. It turns
out that it leads to an artificial grid motion, which requires a very expensive treatment [14]. Moreover, with this approach
the flux calculation is not consistent with the node motion. Recently, new cell-centered methods have been proposed in
[18,1]. These new approaches use a fully Lagrangian form of the gas dynamics equations, that is, the gradient and divergence
operators are expressed in the Lagrangian coordinates. This type of discretization has to follow the Jacobian matrix associ-
ated with the map between Lagrangian and Eulerian spaces. In [18], the coefficients of the Jacobian matrix are introduced as
new independent variables located within the cells. The vertex velocity is obtained by inverting compatibility conditions. In
this case, the node displacement is not consistent with the flux computation. To solve this problem Després and Mazeran in
[12] use the free divergence constraint to discretize the coefficients of the Jacobian matrix at the interfaces. They show that it
amounts to compute the node velocity in a consistent way. The key point in this work is the introduction of a nodal Riemann
solver such as to derive the nodal velocity coherently with the interface fluxes. The global conservation of momentum and
total energy is achieved and semi-discrete entropy inequality is provided. However, this nodal solver exhibits a strong
dependence on the cell aspect ratio which can lead to severe numerical instabilities. This difficulty is critical for Lagrangian
hydrodynamics computations and thus has motivated Maire et al. [21] to propose an alternative scheme that successfully
solves the aspect ratio problem and at the same time keeps the consistency between the node displacement and the fluxes
computation. This scheme also locally conserves momentum, total energy and it satisfies a local entropy inequality. The
main new feature of this algorithm is the introduction of four pressures on each edge, two for each node on each side of
the edge. This is the main difference to the scheme presented in [12].

In the present paper, the Lagrangian formulation is considered in the Arbitrary-Lagrangian–Eulerian (ALE) framework
with the constraint that the mesh and the fluid velocity coincide. We develop a finite volume formulation for unstructured
grids, wherein control volumes are made of polygons in 2D and polyhedra in 3D. The only assumption needed for our scheme
is that the faces of the cells must be ðd� 1Þ-simplices, where d is the dimension of the space. For d ¼ 2 this assumption is
always satisfied, for d ¼ 3 we split each face of the polyhedral cells into triangles. The link between the vertex velocity and
the fluid motion is obtained by a formulation of the momentum conservation on a class of sub-scales encased volumes
around mesh vertices. This lead to a balance relation between sub-zonal forces which are computed by half-Riemann prob-
lems to define vertices motion and control the numerical viscosity. In order to ensure conservation properties and consis-
tency with the geometric conservation law (GCL), velocity and pressure are interpolated on interfaces with two different
sets of linear functions, satisfying an orthogonality property. The resulting numerical fluxes are compatible with the mesh
motion. Moreover, in the two-dimensional case, this formulation, in its first-order version, recovers the schemes proposed in
[12,21].

Finally, we have designed a high-order multi-dimensional Lagrangian scheme by consistently deriving discrete equations
for the time evolution of mesh nodes, momentum and total energy. These discrete equations are obtained by means of a
multi-scale study aiming at satisfying the governing equations at different mesh levels (primal and dual cells), thus yielding
a compatible definition of face fluxes and nodal velocities. We point out that the present scheme satisfies the conservation of
momentum and total energy, plus an entropy inequality. In comparison to the two-dimensional first-order scheme
presented in [21], the present paper provides not only a high-order extension but also a general framework, which allows
to derive three-dimensional discretization and analyze the properties of the discrete model in a more rigorous way.
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The paper is organized as follows: first, we derive the spatial first-order discretization of the gas dynamics equations in
Lagrangian form and give its main features. Then, we show how to construct the second-order extension thanks to piecewise
linear monotonic reconstruction. We achieve the derivation of the numerical scheme by developing its second-order time
discretization and by giving some practical issues related to the time step limitations. Last, we validate our new scheme with
2D and 3D test cases. They are representative test cases for compressible fluid flows and demonstrate the robustness and the
accuracy of this new scheme.

2. Spatial discretization

2.1. Governing equations

Let D be an open subset of IRd, d ¼ 2 or 3, filled with an inviscid ideal fluid and equipped with an orthonormal frame. We
are interested in discretizing the equations of the Lagrangian hydrodynamics. It is convenient, from the point of view of sub-
sequent discretization to write the unsteady compressible Euler equations in the control volume formulation which holds for
an arbitrary moving control volume
d
dt

Z

VðtÞ
qdV þ

Z

SðtÞ
qðU � jÞ � N dS ¼ 0; ð1aÞ

d
dt

Z

VðtÞ
qU dV þ

Z

SðtÞ
qUðU � jÞ � N dS ¼ �

Z

SðtÞ
PN dS; ð1bÞ

d
dt

Z

VðtÞ
qEdV þ

Z

SðtÞ
qEðU � jÞ � N dS ¼ �

Z

SðtÞ
PU � N dS: ð1cÞ
Here, VðtÞ is the moving control volume, and SðtÞ its boundary. q, U, P, E are the mass density, velocity, pressure and specific
total energy of the fluid. N denotes the unit outward normal vector to the moving boundary SðtÞwhose velocity is denoted by
j (kinematic velocity). Implicit in the use of these equations is also the conservation of volume:
d
dt

Z

VðtÞ
dV �

Z

VðtÞ
j � N dS ¼ 0: ð2Þ
This equation is also named geometric conservation law (GCL) and, it is equivalent to the local kinematic equations
dX
dt
¼ j; Xð0Þ ¼ x; ð3Þ
where X are coordinates defining the control volume surface at time t > 0 and x are the coordinates at time t ¼ 0. Then,
X ¼ Xðx; tÞ are implicitly defined by the local kinematic equations, which are also named the trajectory equations. This en-
ables us to define the map
Mt : Vð0Þ ! VðtÞ;
x#Xðx; tÞ;
where X is the unique solution of (3). With fixed t, this map advances each fluid particle from its position at time t ¼ 0 to its
position at time t. Let us introduce F ¼ rxX, the Jacobian matrix of this map and J its determinant. Then, time differentiation
of J gives the classical equation
dJ
dt
� Jr � j ¼ 0;
which is nothing but the local version of the GCL equation (2).
The thermodynamical closure of the set of equations (1) is obtained by the addition of an equation of state which is taken

to be of the form

P ¼ Pðq; eÞ; ð4Þ
where the specific internal energy, e, is related to the specific total energy by e ¼ E� 1
2 kUk

2
: The set of previous equations is

referred to as the Arbitrary-Lagrangian–Eulerian (ALE) integral form of the Euler equations and can be found in many papers
[2,17]. Eqs. (1a)–(1c) express the conservation of mass, momentum and total energy.

In the Lagrangian formalism the rates of change of volume, mass, momentum and energy are computed assuming that the
computational volumes are following the material motion. This leads to the following set of equations
d
dt

Z

VðtÞ
qdV ¼ 0; ð5aÞ

d
dt

Z

VðtÞ
qU dV þ

Z

SðtÞ
PN dS ¼ 0; ð5bÞ

d
dt

Z

VðtÞ
qEdV þ

Z

SðtÞ
Pj � N dS ¼ 0; ð5cÞ
where the kinematic velocity j is obtained from the kinematic constraint
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8X 2 SðtÞ; jðX; tÞ ¼ UðX; tÞ: ð6Þ
We notice that Eq. (5a) implies that the mass of the control volume remains constant.

2.2. Notations and assumptions

Let us consider the physical domain Vð0Þ that is initially filled by the fluid. We assume that we can map it by a set of cells
without gaps or overlaps. Each cell may be a general polygon in 2D or a general polyhedron in 3D. It is assigned a unique
index c, and is denoted by Xcð0Þ. For a given time t > 0, we set XcðtÞ ¼ Mt ½Xcð0Þ�, whereMt is the map previously defined.
Here, we assume that XcðtÞ is still a polygon in 2D or a polyhedron in 3D, that is, the mapMt is a continuous and linear function
over each element of the mesh. Here, we have used the term polyhedron to describe the types of three-dimensional cells over
which we discretize the conservation laws. Our definition of a polyhedral cell is a volume enclosed by an arbitrary number of
faces, each determined by an arbitrary number (3 or more) of vertices. If a face has four or more vertices, they can be non-
coplanar, thus the face is not a plane and it is not possible to define its unit outward normal. In order to avoid this problem,
we decide to divide each face into triangular facets without adding supplementary vertices because we do not want to add
supplementary unknowns. For instance, in the case of an hexahedron cell, each quadrangular face is divided into two trian-
gular faces. For the subsequent discretization, we assume that the boundary, oXcðtÞ, of the cell c is the union of faces which
are ðd� 1Þ-simplices, that is, segment for d ¼ 2 and triangles for d ¼ 3.

Each vertex of the mesh is assigned a unique index p and we denote by CðpÞ the set of cells that share a particular vertex p.
We subdivide each cell into a set of sub-cells. Each sub-cell is uniquely defined by a pair of indices c and p and is denoted by
Xcp. In 2D, this sub-cell is constructed by connecting the cell center of Xc to the midpoints of cell edges impinging on point p,
see Fig. 1. In order to define the sub-cell in 3D we must define the following auxiliary points: the cell center of Xc , the cell
center of each face and the midpoint of each edge impinging on point p. In addition, these points are connected by straight
lines. The reunion of the sub-cells Xcp that share a particular point p enables to define the vertex-centered cell, Xp, related to
the vertex p
Xp ¼
[

c2CðpÞ
Xcp: ð7Þ
With the previous notations, we have introduced a primal mesh formed by the cells Xc and a dual one formed by the vertex-
centered cells Xp. This dual mesh is also named median mesh. Here, we use completely similar notations to those introduced
in [7]. We denote by oXp and oXcp the boundaries of the cells Xp and Xcp.

In order to improve the readability of the paper we give hereafter the list of the different sets of index that will be used
throughout the paper. Let us note that the generic indices utilized in the sequel are c for the cells, p for the points (vertices)
and f for the faces.

� Sets related to the cell c:
PðcÞ denotes the set of points of the cell c;
FðcÞ denotes the set of faces of the cell c;
F pðcÞ denotes the set of faces of the cell c that share point p.
Fragment of a 2D unstructured grid, including cell Xc and point p. The solid lines defines the primal grid, and the dashed lines show the median
he median mesh is formed by connecting the cell centers, �, to the mid-side points, }. The dashed area shows the sub-cell Xcp.
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� Sets related to the point p:
CðpÞ denotes the set of cells that share point p;
FðpÞ denotes the set of faces that share point p.

� Sets related to the face f:
Pðf Þ denotes the set of points of the face f.

� Sets related to the sub-cell cp:
F cðcpÞ denotes the set of faces of the sub-cell cp that share the cell center of c;
F pðcpÞ denotes the set of faces of the sub-cell cp that share the point p.

Using the previous notations it is straightforward to show that
FðcÞ ¼
[

p2PðcÞ
F pðcpÞ: ð8Þ
2.3. Discretization of the GCL

In order to define a numerical scheme for the GCL we have to properly define an approximated mapMt . For sake of sim-
plicity we first make the supplementary assumption that the cells are d-simplices. We point out that the extension to the
case of a non-simplicial mesh in 2D (resp. in 3D) is performed by triangulating (resp. tetrahedralizing) polygons (resp. poly-
hedra) of arbitrary order so that the volume variation of any cells can be computed in a general manner on an unstructured
grid. Therefore, a continuous and linear map over each element will preserve the mesh structure. Using the finite element
formalism, this transformation is defined on the simplicial cell, XcðtÞ, by the position of its vertices XpðtÞ
Xcðx; tÞ ¼
X

p2PðcÞ
upðXÞXpðtÞ; ð9Þ
where PðcÞ is the set of vertices of cell XcðtÞ and upðXÞ is the barycentric coordinate related to vertex p. Since the transfor-
mation is linear, the barycentric coordinate is invariant, that is, upðXÞ ¼ upðxÞ. Therefore, the approximated kinematic veloc-
ity field is obtained by time differentiation of (9)
jcðX; tÞ ¼
X

p2PðcÞ
upðxÞjpðtÞ; ð10Þ
where jp is the velocity of vertex p. The Jacobian matrix Fc of this transformation is written
Fc ¼
X

p2PðcÞ
jpðtÞ � rxup;
where $x is the gradient operator defined with the x coordinates. Fc is a constant function since up is linear. Therefore, its
determinant Jc is also a constant function over the cell Xc , which is equal to the volume of the cell.

The GCL equation is written
dVc

dt
¼

Z

oXcðtÞ
jc � N dS;

¼
X

f2FðcÞ

Z

f
jc � N dS:
Here, Vc ¼
R

Xc
dV denotes the volume of the cell Xc , jc is defined by (10) and FðcÞ denotes the set of faces of Xc. We notice

that each face f of the cell Xc is a ðd� 1Þ� simplex and, the restriction of jc the face f is linear. Therefore, the integral in the
previous equation is written
Z

f
jc � N dS ¼ 1

d
ð

X

p2Pðf Þ
jpÞ � Sf Nc

f ;
where Pðf Þ is the set of vertices of face f, Sf denotes the surface of face f, and Nc
f its unit outward normal. Combining the

previous results we obtain the discretization of the GCL equation for a simplicial mesh
dVc

dt
�

X

f2FðcÞ

1
d

X

p2Pðf Þ
jp

0

@

1

A � Sf Nc
f ¼ 0: ð11Þ
This fundamental equation describes the Lagrangian representation of fluid flow.

Comment 1. The GCL discretization can be utilized in a different way by noticing that Eq. (11) determines the discrete form
of the divergence of the velocity field over the cell Xc
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ðr � jÞc ¼
1
Vc

dVc

dt

¼ 1
Vc

X

f2FðcÞ

1
d

X

p2Pðf Þ
jp

0

@

1

A � Sf Nc
f

¼ 1
Vc

X

p2PðcÞ

1
d

X

f2F pðcÞ
Sf N

c
f

0

@

1

A � jp:
Here, F pðcÞ denotes the subset of faces of Xc that share point p. By defining the corner vector, Cc
p, that is associated with cell c

and point p
Cc
p ¼

1
d

X

f2FpðcÞ
Sf Nc

f ;
we finally obtain
ðr � jÞc ¼
1
Vc

X

p2CðpÞ
Cc

p � jp: ð12Þ
This last equation has been previously derived and utilized in [9,10] in order to construct compatible hydrodynamics algo-
rithms using the method of Support Operators.
2.4. Discretization of the physical conservation laws

The aim of this section is to provide a discretization for the system of the physical conservation laws. Setting
q ¼
1
U
E

0

B
@

1

C
A ; /ðq;NÞ ¼

0
PN

Pj � N

0

B
@

1

C
A ; ð13Þ
the system (5) can be written in the general form
d
dt

Z

Xc ðtÞ
qqdV þ

Z

oXcðtÞ
/ðq;NÞdS ¼ 0: ð14Þ
Here, we have used the control volume defined by the primal cell Xc . We notice that the first equation of the above system
corresponds to mass conservation. Its integration provides
Z

XcðtÞ
qdV ¼ mc;
where mc is the constant mass of the cell Xc . Let us define the mass averaged value of q over the cell Xc
qc ¼
1

mc

Z

Xc

qqdV :
By applying this definition for q ¼ 1
q we get the following form of mass conservation:
VcðtÞ ¼
mc

qcðtÞ
; ð15Þ
where qc is the mean value of the mass density over cell Xc. By using (15), we notice that the GCL can be rewritten
mc
d
dt

1
qc

� �
�

Z

oXcðtÞ
j � N dS ¼ 0: ð16Þ
Therefore, the GCL can be viewed also as a physical conservation law related to the specific volume 1
qc

. With the previous
comments the system of physical conservation laws has the generic form
mc
d
dt

qc þ
Z

oXcðtÞ
/ðq;NÞdS ¼ 0; ð17Þ
where we have set
qc ¼

1
qc

Uc

Ec

0

B
@

1

C
A ; /ðq;NÞ ¼

�j � N
PN

Pj � N

0

B
@

1

C
A : ð18Þ
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We assume that the boundary, oXcðtÞ, of cell c is the reunion of faces f which are ðd� 1Þ-simplices. Thus, the physical con-
servation laws become
mc
d
dt

qc þ
X

f2FðcÞ
/c

f ¼ 0; ð19Þ
where the face flux /c
f is defined by
/c
f ¼

Z

f
/ðq;NÞdS:
Since the face f is a ðd� 1Þ-simplex its unit outward normal is constant, i.e. NðX; tÞ ¼ NðtÞ. Therefore, the numerical flux is
written
/c
f ¼

�jH

f � Sf Nc
f

PH

f Sf Nc
f

ðPjÞHf � Sf Nc
f

0

B
B
@

1

C
C
A : ð20Þ
jH

f , PH

f and ðPjÞHf denote the face fluxes defined by
jH

f ¼
1
Sf

Z

f
jðX; tÞdS; ð21aÞ

PH

f ¼
1
Sf

Z

f
PðX; tÞdS; ð21bÞ

ðPjÞHf ¼
1
Sf

Z

f
ðPjÞðX; tÞdS: ð21cÞ
Finally, we obtain the following set of discrete equations for the discrete variables 1
qc
;Uc ; Ec

� �
mc
d
dt

1
qc

� �
�

X

f2FðcÞ
Sf Nc

f � jH

f ¼ 0; ð22aÞ

mc
d
dt
ðUcÞ þ

X

f2FðcÞ
Sf Nc

f PH

f ¼ 0; ð22bÞ

mc
d
dt
ðEcÞ þ

X

f2FðcÞ
Sf Nc

f � ðPjÞHf ¼ 0: ð22cÞ
The points motion is given by the discrete trajectory equation
d
dt

Xp ¼ jp; Xpð0Þ ¼ xp; ð23Þ
where jp � jpð 1
qc
;Uc; EcÞ is the point velocity. We notice that all primary variables, including material velocity, are cell-cen-

tered as it is done in [2,21]. In order to complete this discretization the following important problems arise:

� How do we compute the face fluxes defined by system (21)?
� How do we compute the point velocities jp?
� These velocities being known, how can we ensure the compatibility between the mesh motion and the volume variations

of the cells?

We have already answered to the last question. In fact we have shown previously that (22a) is fully equivalent to the GCL
provided the face flux jH

f is written
jH

f ¼
1
d

X

p2Pðf Þ
jp: ð24Þ
This fundamental relation enables to write two equivalent discretizations of the specific volume variation. It can be given in
term of the flux through the faces, or equivalently, in term of vertex fluxes. Moreover, the two discretizations are compatible
with the point motion under the condition (24).

Hence, one can consider two methods for computing the face velocities:

� The first one relies on the evaluation of the normal velocity using a one-dimensional Riemann solver at faces. The vertex
velocities have to be computed by solving a linear system built from equations (24) written for all the faces. This system is
in general singular, that is why we give up this approach and shall adopt a more robust method.
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� In the second method, the point velocities are first evaluated using some still-to-define solver. The face velocities are then
computed from (24). This is the technique we will use in the sequel of the paper because this method will guarantee the
compatibility between vertex motion and cell volumes variation.

Thus, our task consists in building a numerical solver that can compute the face fluxes PH

f , ðPjÞHf and the point velocity jp.
We resolve these questions in the next sections.

2.5. Derivation of the point velocity

We define a strategy to compute the nodal velocity. We recall that the kinematic velocity is assumed to be continuous and
linear in order to define a coherent map Mt that preserves the structure of the mesh.

One natural way to obtain the nodal velocity consists in choosing the dual cell Xp instead of the primal cell Xc as a control
volume for the momentum equation
d
dt

Z

Xp

qjdV þ
Z

oXp

PN dS ¼ 0: ð25Þ
It leads to a staggered spatial placement of the variables wherein the position and the velocity are defined at grid points, and
density, internal energy, and the pressure are defined at cell centers [9].

Here, we will proceed differently by keeping a centered spatial placement of the physical variables (density, momentum,
pressure and total energy) and in the same time defining coherently the kinematic velocity to move the mesh. Consider a
point p and the cells c 2 CðpÞ that share this point. In each cell c the fluid flow is characterized by the constant state
qc ¼ ð 1

qc
;Uc; EcÞt . One way to compute the point velocity jp consists in solving the multi-dimensional Riemann problem at

point p defined by the initial conditions qc; c 2 CðpÞ, see Fig. 2. Its solution would provide also the point pressure PH

p , which
is the instantaneous value of pressure at point p immediately following the breakdown of the initial discontinuity. Knowing
jp and PH

p , we could easily compute the face fluxes /c
f and design a conservative scheme. Unfortunately, such an approach is

not possible since up to our knowledge the solution of such a multi-dimensional Riemann problem is still not known.

2.5.1. The classical approach
Dukowicz and its co-authors [2] suggest an alternative approach based on one-dimensional Riemann problems. Let us

consider c1 and c2, two adjacent cells that share point p, see Fig. 3. We denote by f the common face to these cells and by
Nc1

f , Nc2
f the unit outward normals related to this face. We set N f ¼ Nc2

f ¼ �Nc1
f . Here, the one-dimensional Riemann problem

is defined by the discontinuity of the state variables qc on either side of the cell face f, in the vicinity of point p.
The solution of this Riemann problem provides the unique pressure PH

pf and normal velocity jH

pf � N f of the contact surface.
In the case of an approximate acoustic Riemann solver, these values satisfy the following linear system [13]
Pc1 � PH

pf ¼ �Zc1 ðjH

pf � Uc1 Þ � N f ; ð26aÞ
Pc2 � PH

pf ¼ Zc2 ðjH

pf � Uc2 Þ � N f ; ð26bÞ
where Zci
for i ¼ 1;2 is the acoustic impedance (i.e. the density times the isentropic sound speed). A straightforward calcu-

lation shows that
Fig. 2. Initial conditions for the multi-dimensional Riemann problem at point p.



Fig. 3. Initial conditions for the one-dimensional Riemann problem at face f in the vicinity of point p.
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PH

pf ¼
Zc1 Pc2 þ Zc2 Pc1

Zc1 þ Zc2

� Zc1 Zc2

Zc1 þ Zc2

ðUc1 � Uc2 Þ � N f ; ð27aÞ

jH

pf � N f ¼
ðZc1 Uc1 þ Zc2 Uc2 Þ � N f

Zc1 þ Zc2

� Pc1 � Pc2

Zc1 þ Zc2

: ð27bÞ
Knowing PH

pf and jH

pf � N f one gets immediately the face fluxes however, the point velocity is still unknown. In [2], jp is taken
to be the vector whose components normal to adjacent cell faces agrees with the Riemann velocity at each adjacent cell face,
in a weighted least squares sense
jp ¼ argmin
X

f2FðpÞ
xf ðjp � Nf � jH

pf � N f Þ2;
where FðpÞ is the set of faces that share point p and xf is a positive weight defined in [2]. By noticing that in general
jp � N f –jH

pf � Nf , we realize that this way of deriving the point velocity leads to an inconsistency with the GCL discretization.
In addition, with such an approach the kinematic velocity j will be discontinuous in the vicinity of point p.

2.5.2. A new approach
To ensure consistency with the GCL discretization and continuity of the kinematic velocity around point p, we propose to

solve two half one-dimensional Riemann problems at each cell interface by assuming that its velocity is equal to the point
velocity jp. Thus, at each face f connected to point p, we introduce two interface pressures PH

pc1 f and PH

pc2 f , see Fig. 4, defined by
Pc1 � PH

pc1 ;f
¼ �Zc1 ðjp � Uc1 Þ � N f ; ð28aÞ

Pc2 � PH

pc2 f ¼ Zc2 ðjp � Uc2 Þ � N f : ð28bÞ
By subtracting (28b) from (28a), we get
PH

pc2 f � PH

pc1 f ¼ ðZc1 þ Zc2 ÞðjH

pf � N f � jp � N f Þ;
where jH

pf � Nf is the normal component of the face velocity originating from the solution of the one-dimensional acoustic
Riemann problem, refer to Eq. (27b). We notice that PH

pc1 f ¼ PH

pc2f if and only if jH

pf � N f ¼ jp � Nf . In this case, we recover
Fig. 4. Localization of the multiple pressures for the half Riemann problems in the vicinity of point p.
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the solution of the one-dimensional Riemann problem and we get PH

pc1 f ¼ PH

pc2 f ¼ PH

pf and jH

pf � Nf ¼ jp � Nf ¼ jH

pf � N f . Since in
general jH

pf � N f –jp � N f we obtain the discontinuity PH

pc1 f –PH

pc2 f .
It turns out that for each simplicial face f, through the use of Eq. (28), we have introduced 2d nodal pressures PH

pc1f and PH

pc2f

for p 2 Pðf Þ, from which we are able to compute the face fluxes. The discontinuity of these pressures implies the loss of
momentum conservation for our cell-centered discretization. Moreover, the point velocity has not been yet determined.
In what follows, we shall present the solution of the issue related to the point velocity definition. Then, in the next section,
using this point velocity definition, we will show that the momentum conservation is recovered.

Since the momentum conservation equation, in its ALE form, (1b), is valid for any moving control volume V, we can write
it for the dual cell, Xp, and for all the sub-cells, Xcp, that surround point p
d
dt

Z

Xp

qU dV þ
Z

oXp

qUðU � jÞ � N dSþ
Z

oXp

PN dS ¼ 0; ð29aÞ

d
dt

Z

Xcp

qU dV þ
Z

oXcp

qUðU � jÞ � N dSþ
Z

oXcp

PN dS ¼ 0; 8c 2 CðpÞ: ð29bÞ
We notice that (29a) expresses momentum conservation over the dual cell, whereas (29b) expresses momentum balance
locally over each sub-cell. The dual cell and its boundary can be decomposed knowing
Xp ¼
[

c2CðpÞ
Xcp; oXp ¼

[

c2CðpÞ

[

f2F cðcpÞ
Rcp

f ;
where F cðcpÞ is the subset of faces of Xcp that share point c and Rcp
f stands for a generic simplicial face of the sub-cell bound-

ary. Then, Eq. (29a) is rewritten
X

c2CðpÞ

d
dt

Z

Xcp

qU dV þ
X

f2F cðcpÞ

Z

f
qUðU � jÞ � N dSþ

X

f2F cðcpÞ

Z

f
PN dS

2

4

3

5 ¼ 0: ð30Þ
The subdivision of the sub-cell boundary
oXcp ¼
[

f2F cðcpÞ
Rcp

f

0

@

1

A
[ [

f2FpðcpÞ
Rcp

f

0

@

1

A ;
where F pðcpÞ is the subset of faces of Xcp that share point p, enables to rewrite (29b) as
d
dt

Z

Xcp

qU dV þ
X

f2FpðcpÞ

Z

f
qUðU � jÞ � N dSþ

X

f2FpðcpÞ

Z

f
PN dS

þ
X

f2F cðcpÞ

Z

f
qUðU � jÞ � N dSþ

X

f2F cðcpÞ

Z

f
PN dS ¼ 0; 8c 2 CðpÞ:
We notice that the second term in the left-hand side is equal to zero since Xc is a Lagrangian cell (U ¼ j for f 2 F pðcpÞ). The
summation of the previous equation over all the sub-cells that surround point p yields
X

c2CðpÞ

d
dt

Z

Xcp

qUdV þ
X

f2F cðcpÞ

Z

f
qUðU � jÞ � NdSþ

X

f2F cðcpÞ

Z

f
PNdS

2

4

3

5 þ
X

c2CðpÞ

X

f2FpðcpÞ

Z

f
PN dS ¼ 0:
Finally, by subtracting this last equation from (30) we obtain

X

c2CðpÞ

X

f2FpðcpÞ

Z

f
PN dS ¼ 0: ð31Þ
By setting
PH

pcf ¼
1
Sf

Z

f
PðX; tÞdS;
Eq. (31) can be rewritten

X

c2CðpÞ

X

f2FpðcpÞ
Sf PH

pcf N
c
f ¼ 0: ð32Þ
Note that this equation is invariant by any homothety centered at point p. It expresses the balance of momentum locally
around point p. Hence PH

pcf can be viewed as a nodal pressure located at point p and related to cell c and face f. Since the
velocity of face f in the vicinity of point p is equal to the nodal velocity jp, the nodal pressure PH

pcf is computed using the fol-
lowing half approximate Riemann problem:
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Pc � PH

pcf ¼ Zcðjp � UcÞ � Nc
f ; for f 2 F pðcpÞ: ð33Þ
Here, Zc denotes the acoustic impedance defined in cell c and Nc
f is the unit outward normal related to the face Sf for

f 2 F pðcpÞ. The substitution of (33) into (32) leads to

X

c2CðpÞ

X

f2FpðcpÞ
Sf ZcðNc

f � Nc
f Þjp ¼

X

c2CðpÞ

X

f2FpðcpÞ
Sf PcNc

f þ Sf ZcðNc
f � Nc

f ÞUc

h i
: ð34Þ
The nodal velocity satisfies a d� d system. Since the geometric variables (surface Sf and unit outward normal Nc
f ) depend on

the nodal velocity jp via the trajectory Eq. (23), we notice that the previous system is non-linear. This nodal solver is the
multi-dimensional extension of the two-dimensional solver derived in [21].

2.5.3. Summary
By setting
Mpcf ¼ Sf ZcðNc
f � Nc

f Þ; for f 2 F pðcpÞ; and Mp ¼
X

c2CðpÞ

X

f2FpðcpÞ
Mpcf ; ð35Þ
the point velocity jp and the point pressure PH

pcf related to cell c and face f are written
h i
jp ¼ M�1
p

X

c2CðpÞ

X

f2FpðcpÞ
Sf PcNc

f þMpcf Uc ;

PH

pcf ¼ Pc � Zcðjp � UcÞ � Nc
f ; for f 2 F pðcpÞ:
We note that the matrix Mp is symmetric positive definite and thus always invertible.

Comment 2. Here, we have derived the nodal velocity utilizing the acoustic approximate Riemann solver for which
Zc ¼ qcac , where ac is the local speed of sound. As suggested by Dukowicz [13] we can use the artificial shock viscosity
approximation by rewritting (33) as
Pc � PH

pcf ¼ Zpcf ðjp � UcÞ � Nc
f ; for f 2 F pðcpÞ ð36Þ
with Zpcf ¼ qc½ac þ Ac j ðjp � UcÞ � Nc
f j�, where Ac is a material-dependent parameter that is given in terms of the density ratio

in the limit of very strong shocks. In the case of a gamma law gas one gets Ac ¼ cþ1
2 where c is the polytropic index.

Comment 3. Instead of using the unit outward normal, Nc
f , related to the face f in Eq. (33), one can introduce the average

corner normal Npc defined by
SpcNpc ¼
X

f2FpðcpÞ
Sf Nc

f :
Then, there is only one half Riemann problem corresponding to this unit normal and, it is written
Pc � PH

pc ¼ Zcðjp � UcÞ � Npc: ð37Þ
This amounts to define only one nodal pressure PH

pc for each cell that surrounds point p. With this choice, the system satisfied
by the nodal velocity is written
X

c2CðpÞ
SpcZcðNpc � NpcÞjp ¼

X

c2CðpÞ
SpcPcNpc þ SpcZcðNpc � NpcÞUc

� �
: ð38Þ
Using the corner normal Npc in the definition of the half Riemann problem (33), we have recovered the nodal solver devel-
oped in [12]. The force corresponding to the single nodal pressure PH

pc reads Fpc ¼ SpcPH

pcNpc. We note that this sub-cell force is
always colinear to the geometric direction Npc . Due to this fact, it appears that the nodal solver proposed in [12] exhibits a
strong dependence to the cell aspect ratio. This problem can lead to numerical instability.
2.6. Fluxes approximation

The aim of this section is to provide an approximation of the face fluxes jH

f , PH

f , ðPjÞHf for the discrete Eqs. (22) related to
the physical conservation laws. The face fluxes approximations are constructed by using a linear mapping over each simpli-
cial faces. This linear mapping utilizes the nodal velocity and pressures provided by the nodal solver. We shall show also that
this approximation enables us to recover momentum and total energy conservation.

Let us consider a cell c and one face f 2 FðcÞ. Since f is a ðd� 1Þ-simplex, for each p 2 Pðf Þ we introduce, up, the barycen-
tric coordinate related to the vertex p. We recall the classical result
1
Sf

Z

f
upðXÞdS ¼ 1

d
: ð39Þ



810 P.-H. Maire, B. Nkonga / Journal of Computational Physics 228 (2009) 799–821
2.6.1. GCL flux
In order to be self-consistent, we recall briefly the face flux approximation that corresponds to the GCL equation. We have

shown previously that the velocity over the face f is written
jðX; tÞ ¼
X

p2Pðf Þ
upðXÞjpðtÞ; for X 2 Sf
The substitution of the velocity field into the definition of the face flux (21a) leads to
jH

f ¼
1
d

X

p2Pðf Þ
jp: ð40Þ
2.6.2. Momentum flux
The computations of the momentum and total energy fluxes are made using the following linear interpolation for the

pressure:
PðX; tÞ ¼
X

p2Pðf Þ
wpðXÞP

H

pcf ðtÞ; for X 2 Sf :
Here, wp is a linear function over the face f to be determined. Since the nodal pressure PH

pcf is discontinuous across f we denote
the face flux PH

cf instead of PH

f . After substitution of the linear interpolation we get
PH

cf ¼
1
Sf

Z

f
PðX; tÞdS

¼
X

p2Pðf Þ
apPH

pcf ;
where the unknown coefficient ap is written
ap ¼
1
Sf

Z

f
wpðXÞdS: ð41Þ
We claim that with this approximation of the momentum flux, momentum conservation is ensured. Omitting the boundary
conditions and summing the momentum equation on each cell, written with the previous approximation of the momentum
flux, we get the global balance of momentum
d
dt

X

c

mcUc

 !

¼ �
X

c

X

f2FðcÞ

X

p2Pðf Þ
Sf N

c
f apPH

pcf

¼ �
X

c

X

p2PðcÞ

X

f2FpðcpÞ
Sf Nc

f apPH

pcf thanks to ð8Þ

¼ �
X

p

ap

X

c2CðpÞ

X

f2FpðcpÞ
Sf Nc

f PH

pcf

¼ 0:
Here, we have replaced the global summation over cells by a global summation over points and, we have used the fact that
PH

pcf satisfies Eq. (32).

2.6.3. Total energy flux
We compute the total energy flux interpolation by combining the linear interpolations of the velocity and the pressure
ðPjÞðX; tÞ ¼
X

p2Pðf Þ

X

q2Pðf Þ
wqðXÞupðXÞP

H

qcf ðtÞjpðtÞ; for X 2 Sf :
Since the nodal pressure PH

pcf is discontinuous across face f we denote the total energy face flux ðPjÞHcf instead of ðPjÞHf . After
substitution of the linear interpolation we get
ðPjÞHcf ¼
1
Sf

Z

f
ðPjÞðX; tÞdS

¼
X

p2Pðf Þ

X

q2Pðf Þ
bpqPH

qcf jp;
where the unknown coefficient bpq is written
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bpq ¼
1
Sf

Z

f
upðXÞwqðXÞdS: ð42Þ
We give a sufficient condition to ensure total energy conservation. We claim that if the coefficients bpq are written under the
form
bpq ¼ Cpdp;q; ð43Þ
where Cp is an unknown coefficient and dp;q the Kronecker symbol, then the total energy conservation is ensured. The dem-
onstration consists in writing the global balance of total energy
d
dt
ð
X

c

mcEcÞ ¼ �
X

c

X

f2FðcÞ

X

p2Pðf Þ

X

q2Pðf Þ
Sf N

c
f bpqPH

qcf � jp

¼ �
X

c

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f CpPH

pcf � jp thanks to ð43Þ

¼ �
X

c

X

p2PðcÞ

X

f2FpðcpÞ
Sf Nc

f CpPH

pcf � jp thanks to ð8Þ

¼ �
X

p

Cp

X

c2CðpÞ

X

f2FpðcpÞ
Sf Nc

f PH

pcf

0

@

1

A � jp

¼ 0:
We note that the term between the parentheses are null because of the momentum conservation. Let us remark that total
energy conservation is achieved regardless the value of the constant Cp. Here, the important property to satisfy total energy
conservation originates from the orthogonality relation between the basis fupg and fwpg.

2.6.4. Definition of the wp functions
Finally, it remains to determine the linear function wp for p 2 Pðf Þ in order to compute the coefficients ap and Cp. This

determination is performed using the following decomposition of the unknown function over the basis fupg
wp ¼
X

q2Pðf Þ
Apquq; p 2 Pðf Þ; ð44Þ
where Apq are the d2 unknown coordinates of wq function. These coordinates are computed using the two following
conditions:

� Consistency condition: fwpg for p 2 Pðf Þ must preserve constant functions, that is,

X

p2Pðf Þ
wp ¼ 1:
The substitution of wp in terms of its coordinates gives the equivalent condition

X

p2Pðf Þ
Apq ¼ 1; q 2 Pðf Þ: ð45Þ
� Energy conservation condition: wq must satisfy the condition
1
Sf

Z

f
upðXÞwqðXÞdS ¼ Cpdp;q:
By substituting wq in terms of its coordinates and using the result
1
Sf

Z

f
upðXÞurðXÞdS ¼ 1þ dp;r

dðdþ 1Þ ;
we obtain
1
Sf

Z

f
upðXÞwqðXÞdS ¼

X

r22Pðf Þ
Aqr
ð1þ dp;rÞ
dðdþ 1Þ :
Hence, we find that the coordinates must satisfy

X

r2Pðf Þ
Aqrð1þ dp;rÞ ¼ 0; ðp; qÞ 2 P2ðf Þ and p–q: ð46Þ
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The combination of (45) and (46) gives us a linear system of d2 equations for the d2 unknown coordinates Apq. We can show
that the determinant of this system is always non-null, thus this system admits a unique solution which is written
Apq ¼
d if p ¼ q;

�1 if p–q:

�

Therefore, the functions wp are written
wp ¼ ðdþ 1Þup � 1: ð47Þ
We notice that the basis fwpg can be viewed as the dual basis of fupg.

Finally, knowing the wp functions, we compute ap from (41) and bpq from (42) to get
ap ¼
1
d
; bpq ¼

dp;q

d

and we deduce that the normalization constant, Cp, is written Cp ¼ 1
d.

2.6.5. Summary
With the previous linear interpolations the face fluxes are written
jH

f ¼
1
d

X

p2Pðf Þ
jp; ð48aÞ

PH

cf ¼
1
d

X

p2Pðf Þ
PH

pcf ; ð48bÞ

ðPjÞHcf ¼
1
d

X

p2Pðf Þ
PH

pcf jp: ð48cÞ
We notice that this formulation of the face fluxes leads to a numerical scheme that conserves momentum and total energy.

2.7. The semi-discrete evolution equations

We give in this section the summary of the semi-discrete evolution equations that constitute a closed set of equations for
the unknowns 1

qc
;Uc; Ec

� �
:

mc
d
dt

1
qc

� �
� 1

d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f � jp ¼ 0; ð49aÞ

mc
d
dt
ðUcÞ þ

1
d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f PH

pcf ¼ 0; ð49bÞ

mc
d
dt
ðEcÞ þ

1
d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f � P
H

pcf jp ¼ 0: ð49cÞ
We recall that the point velocity jp and the point pressure PH

pcf are written
jp ¼ M�1
p

X

c2CðpÞ

X

f2FpðcpÞ
Sf PcNc

f þMpcf Uc

h i
; ð50aÞ

PH

pcf ¼ Pc � Zcðjp � UcÞ � Nc
f ; for f 2 F pðcpÞ; ð50bÞ
where the d� d matrices Mpcf and Mp are defined by (35). The motion of the mesh is ruled by the semi-discrete trajectory
equation
d
dt

Xp ¼ jp; Xpð0Þ ¼ xp:
Comment 4. In the Lagrangian formalism we have to consider two types of boundary conditions on the border of the
domain D: either the pressure is prescribed or the normal component of the velocity. Here, we do not detail the
implementation of these boundary conditions. Let us notice that they are consistent with our nodal solver. For a detailed
presentation about this topic the reader can refer to [21].
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2.8. Entropy inequality for the semi-discrete scheme

We show that our scheme in its semi-discrete form satisfies a local entropy inequality. We compute the time variation of
the specific entropy rc in cell c using the Gibbs formula
mcTc
drc

dt
¼ mc

dec

dt
þ Pc

d
dt

1
qc

� �	 

; ð51Þ
where Tc denotes the mean temperature of the cell. Thanks to the definition of the internal energy this equation is rewritten
mcTc
drc

dt
¼ mc

dEc

dt
� Uc �

dUc

dt
þ Pc

d
dt

1
qc

� �	 

:

We dot-multiply Eq. (49b) and substract it from the total energy Eq. (49c) and we get
mc
dEc

dt
� Uc �

dUc

dt

	 

¼ �1

d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f PH

pcf � ðjp � UcÞ:
The pressure work is computed by multiplying (49b) by Pc and it is written
Pc
d
dt
ð 1
qc
Þ ¼ 1

d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f Pc � jp

¼ 1
d

X

f2FðcÞ

X

p2Pðf Þ
Sf N

c
f Pc � ðjp � UcÞ:
The last line of the previous equation comes from the fact that for a closed polyhedron we have

X

f2FðcÞ
Sf N

c
f ¼ 0:
Finally, the combination of the previous results yields
mcTc
drc

dt
¼ 1

d

X

f2FðcÞ

X

p2Pðf Þ
Sf Nc

f ðPc � PH

pcf Þ � ðjp � UcÞ: ð52Þ
Now, using the definition of the pressure flux (50b) we get
mcTc
drc

dt
¼ 1

d

X

f2FðcÞ

X

p2Pðf Þ
Sf Zc½ðjp � UcÞ � Nc

f �
2
:

This equation represents a local entropy inequality for the semi-discrete scheme since its right-hand side is always positive.
The case of the fully discrete scheme is not studied here. However, it is possible in this case to derive a discrete entropy
inequality for the first-order scheme, which is valid under a CFL-type condition. The entropy production associated with
the high-order scheme has not been studied yet. One could probably address this topic using the theoretical framework de-
rived in [30].

Comment 5. The entropy production of our semi-discrete centered scheme has a structure very similar to the artificial
viscosity term used in staggered scheme [8]. But, we must admit that our entropy production term is always active even in
the case of isentropic flows. For such flows our scheme does not conserve entropy. This property is typical from Godunov-
type schemes. However, this extra entropy production can be dramatically decreased by using a second-order extension of
the scheme.
3. Spatial second-order extension

The spatial second-order extension is obtained by a piecewise linear monotonic reconstruction of the pressure and veloc-
ity, given by their mean values over mesh cells [4,3].

3.1. Piecewise linear reconstruction

Let u � uðXÞ denotes a fluid variable (pressure or velocity components), we assume a linear variation for u in cell c
ucðXÞ ¼ uc þ $uc � X � Xcð Þ: ð53Þ
Here, uc is the mean value of u in cell c and $uc is the gradient of u that we are looking for. We note that Xc ¼ 1
Vc

R
Xc

X dV is the
cell centroid so that the reconstruction is conservative. The gradient in (53) is computed by imposing that
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ucðXc0 Þ ¼ uc0 for c0 2 CðcÞ;
where CðcÞ is the set of neighboring cells of cell c. This problem is generally overdetermined and thus the gradient is obtain
by using a least squares procedure. Hence, it is the solution of the following minimization problem
$uc ¼ argmin
X

c02CðcÞ
uc0 � uc � $uc � Xc0 � Xcð Þ½ �2:
A straightforward computation shows that this solution is written
$uc ¼ M�1
c

X

c02CðcÞ
ðuc0 � ucÞ Xc0 � Xcð Þ; ð54Þ
where Mc is the d� d matrix given by
Mc ¼
X

c02CðcÞ
Xc0 � Xcð Þ � Xc0 � Xcð Þ;
we notice that Mc is symmetric positive definite and thus always invertible. The main feature of this least squares procedure
is that it is valid for any type of unstructured mesh and moreover it preserves the linear fields.

3.2. Monotonicity

To preserve monotonicity, we limit the value that the gradient is allowed to take, using the Barth Jespersen multi-dimen-
sional extension [4] of the van Leer’s classical method. For each cell, we introduce the slope limiter /c 2 ½0;1� and the limited
reconstructed field
ulim
c ðXÞ ¼ uc þ /c$uc � X � Xcð Þ; ð55Þ
where $uc denotes the approximated gradient given by (54). The coefficient /c is determined by enforcing the following local
monotonicity criterion
umin
c 6 ulim

c ðXÞ 6 umax
c ; 8X 2 c: ð56Þ
Here, we have set umin
c ¼minðminc02CðcÞ;ucÞ and umax

c ¼maxðmaxc02CðcÞ;ucÞ. Since the reconstructed field is linear we note that
it is sufficient to enforce the following conditions at the points
umin
c 6 ulim

c ðXpÞ 6 umax
c ; 8p 2 PðcÞ; ð57Þ
so that the quantity u in the cell c does not lie outside the range of the average quantities in the neighboring cells. Thanks to
this formula we can define the slope limiter as
/c ¼ min
p2PðcÞ

/c;p
knowing that
/c;p ¼

l umax
c �uc

ucðXpÞ�uc

� �
if ucðXpÞ � uc > 0;

l umin
c �uc

ucðXpÞ�uc

� �
if ucðXpÞ � uc < 0;

1 if ucðXpÞ � uc ¼ 0:

8
>>><

>>>:
Here, l denotes a real function that characterizes the limiter. By setting lðxÞ ¼minð1; xÞwe recover the Barth Jespersen lim-
iter. We can also define a smoother -in the sense that it is more differentiable- limiter by setting lðxÞ ¼ x2þ2x

x2þxþ2. This limiter has
been introduced by Vankatakrishnan [31] in order to improve the convergence towards steady solutions for the Euler
equations.

Finally, instead of using the mean values of the pressure and the velocity in our nodal solver, we use their nodal extrap-
olated values deduced from the linear monotonic reconstruction.

4. Time discretization

For the time discretization of the semi-discrete evolution Eqs. (49a)–(49c) we use a second-order predictor–corrector
scheme. We assume to know the physical properties in the cell c and its geometrical characteristics at the beginning of
the time step tn, i.e., qn

c ;U
n
c ; E

n
c ; P

n
c and Xn

p; for p 2 PðcÞ. Setting Dt ¼ tnþ1 � tn, we want to compute the physical values at time
tnþ1 using the following predictor–corrector time integrator.
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4.1. Predictor step

We denote with the superscript nþ 1;1 the values at the end of this predictor step.

� We compute the nodal values with the nodal solver: knowing the physical variables and the geometry at time tn we com-
pute the nodal velocity jn

p by solving the linear system (34), then we deduce the nodal pressure related to face f and cell c,
PH;n

pcf , thanks to Eq. (33).
� point motion: we advance the points position using the trajectory equation
Xnþ1;1
p ¼ Xn

p þ Dtjn
p

.
� We update the geometry and density: knowing Xnþ1;1

p we compute the geometry and particularly the volume of the cell
Vnþ1;1

c and deduce from it the new density qnþ1;1
c from mass conservation.

� We update the momentum and the total energy by solving
mcðUnþ1;1
c � Un

c Þ þ
Dt
d

X

f2FðcÞ

X

p2Pðf Þ
Sn

f Nc;n
f PH;n

pcf ¼ 0;

mcðEnþ1;1
c � En

c Þ þ
Dt
d

X

f2FðcÞ

X

p2Pðf Þ
Sn

f Nc;n
f � P

H;n
pcf jn

p ¼ 0:
� We update the specific internal energy and the pressure
enþ1;1
c ¼ Enþ1;1

c � 1
2
kUnþ1;1

c k2
;

Pnþ1;1
c ¼ Pðqnþ1;1

c ; enþ1;1
c Þ:
4.2. Corrector step

We use the predicted values in order to complete the time discretization

� We compute the nodal values with the nodal solver: knowing the physical variables and the geometry at the end of the
predictor step we compute the nodal velocity jnþ1;1

p by solving the linear system (34), then we deduce the nodal pressure
related to face f and cell c, PH;nþ1;1

pcf , thanks to Eq. (33).
� Point motion: we advance the points position using the trajectory equation with the centered velocity
Xnþ1
p ¼ Xn

p þ
Dt
2
ðjn

p þ jnþ1;1
p Þ:
.
� We update the geometry and density: knowing Xnþ1

p we compute the geometry and particularly the volume of the cell
Vnþ1

c and deduce from it the new density qnþ1
c from mass conservation.

� We update the momentum and the total energy by using the centered fluxes
mcðUnþ1
c � Un

c Þ þ
Dt
2d

X

f2FðcÞ

X

p2Pðf Þ
ðSn

f Nc;n
f PH;n

pcf þ Snþ1;1
f Nc;nþ1;1

f PH;nþ1;1
pcf Þ ¼ 0;

mcðEnþ1
c � En

c Þ þ
Dt
2d

X

f2FðcÞ

X

p2Pðf Þ
ðSn

f Nc;n
f � P

H;n
pcf jn

p þ Snþ1;1
f Nc;nþ1;1

f � PH;nþ1;1
pcf jnþ1;1

p Þ ¼ 0:
� We update the specific internal energy and the pressure
enþ1
c ¼ Enþ1

c � 1
2
kUnþ1

c k2
;

Pnþ1
c ¼ Pðqnþ1

c ; enþ1
c Þ:
Comment 6. We note that we could also use the time discretization of the GCL (49a) to compute the updated value of the
density. However, since the geometrical part of the volume variation flux is a quadratic function of time, one needs to
perform the time integration exactly in order to ensure the consistency between the discretized GCL and the cell volume
variation [22,23].



816 P.-H. Maire, B. Nkonga / Journal of Computational Physics 228 (2009) 799–821
Comment 7. The geometrical part of the momentum and total energy fluxes is discretized in an explicit manner in order to
preserve the compatibility with the nodal solver. Thus, the scheme conserves exactly momentum and total energy.
4.3. Time step limitation

The time step is evaluated following two criteria. The first one is a standard CFL criterion which guaranties heuristically
the monotone behavior of the entropy. The second is more intuitive, but reveals very useful in practice: we limit the vari-
ation of the volume of cells over one time step.

4.3.1. CFL criterion
We propose a CFL like criterion in order to ensure a positive entropy production in cell c during the time step. At time tn,

for each cell c we denote by kn
c the minimal value of the distance between two points of the cell. We define
DtE ¼ CE min
c

kn
c

an
c
;

where CE is a strictly positive coefficient and ac is the sound speed in the cell. The coefficient CE is computed heuristically and
we provide no rigorous analysis which allows such formula. However, extensive numerical experiments show that CE ¼ 0:25
is a value which provides stable numerical results. We have also checked that this value is compatible with a monotone
behavior of entropy. The rigorous derivation of this criterion could be obtained by computing the time step which ensures
a positive entropy production in cell c from time tn to tnþ1.

4.3.2. Criterion on the variation of volume
We estimate the volume of the cell c at t ¼ tnþ1 with the Taylor expansion
Vnþ1
c ¼ Vn

c þ
d
dt

VcðtnÞDt:
Here, the time derivative d
dt Vc is computed by using (11). Let CV be a strictly positive coefficient, CV 2�0;1½. We look for Dt

such that
jVnþ1
c � Vn

c j
Vn

c

6 CV :
To do so, we define
DtV ¼ CV min
c

Vn
c

j d
dt VcðtnÞj

( )

:

For numerical applications, we choose CV ¼ 0:1.
Last, the estimation of the next time step Dtnþ1 is given by
Dtnþ1 ¼min DtE;DtV ;CMDtnð Þ; ð58Þ
where Dtn is the current time step and CM is a multiplicative coefficient which allows the time step to increase. We generally
set CM ¼ 1:01.

5. Numerical results

In this section, we present several test cases in order to validate our numerical scheme. For each problems, we use a per-
fect gas equation of state which is taken to be of the form P ¼ ðc� 1Þqe, where c is the polytropic index.

5.1. 2D Sedov problem

This test case describes the evolution of a blast wave in a point symmetric explosion for a gas characterized by c ¼ 7
5. An

exact solution with cylindrical symmetry is derived with self-similarity arguments in [19]. The initial density has a uniform
unit distribution, and, the pressure is 10�6 everywhere, except in the cell containing the origin. For this cell we define
P ¼ ðc� 1Þq E0

V where E0 ¼ 0:244816 is the total amount of released energy. For this value, it is shown in [19] that the exact
solution is a cylindrically symmetric diverging shock whose front is at radius r ¼

��
ð

p
x2 þ y2Þ ¼ 1 and has a peak density of 6.

First, we perform a computation on the ½0;1:2� � ½0;1:2� quadrant, subdivided into 30� 30 squares. The results obtained
in Fig. 5 are quite good and they assess the ability of the method to respect the cylindrical symmetry. We notice that these
results are very close to those obtained in [20] for the same setup but using a staggered scheme. For the same problem, we
have also displayed in Fig. 6 the results obtained on a polygonal grid which is defined in [20]. Once more the result shows a
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Fig. 5. 2D Sedov problem on a Cartesian grid: density map (left) and density in all the cells (right) at t ¼ 1.
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Fig. 6. 2D Sedov problem on a polygonal grid: density map (left) and density in all the cells (right) at t ¼ 1.
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good agreement with the analytical solution. The numerical method preserves very well the one-dimensional cylindrical
solution. This demonstrates the ability of our solver to handle unstructured mesh.

5.2. 2D Noh problem

This test case has been introduced by Noh in [24]. A gas with c ¼ 5
3 is given an initial unit inward velocity. A circular shock

wave is generated which at time t ¼ 0:6 has a radius of 0.2. The initial thermodynamic state is given by ðq; PÞ ¼ ð1;10�6Þ. The
initial domain is defined by ½R; h� 2 ½0; 1� � ½0;P2 � where the polar coordinates are given by r ¼

���������������
x2 þ y2

p
and h ¼ arctanðyxÞ. We

use an non-conformal mesh with two levels of refinement. This non-conformal grid contains a mixture of triangles, quad-
rangles and pentagons as it can be seen in Fig. 7. In Fig. 7, we observe the good quality of the mesh after shock reflection
and the good agreement with the analytical solution for the density profile. These numerical results show the ability of
our Lagrangian scheme to handle non-conformal grid without any specific modifications.

5.3. 3D Saltzmann problem

We consider now the motion of a planar shock wave on a Cartesian grid that has been skewed. This test case has been
initially defined for two-dimensional flows in [14]. This is a well known difficult test case that enables to validate the



numericalFig. 7.2D Noh problem on a non-conformal grid: grid (left) and density in all the cells 11.5 22.5 33.5 44.5 55.5 0.7 0.75 0.8 0.85 0.9 0.95 1xanalytical3D.result with 2D skewed grid

analyti
cal

818

P.-H. Maire, B. Nkonga / Journal of Computational Physics 228 (2009) 799–821
robustness of a Lagrangian scheme when the mesh is not aligned with the fluid flow. Here, we consider the three-dimen-
sional extension of this test that has been proposed in [10]. The computational domain is the volume defined by
ðx; y; zÞ 2 ½0;1� � ½0;0:1� � ½0;0:1�. The initial mesh is obtained by transforming a uniform 100� 10� 10 Cartesian grid with
the mapping
(right) att¼0:6.
xsk ¼ xþ ð0:1� zÞð1� 20yÞ sinðxpÞ; for 0 6 y 6 0:05;
xsk ¼ xþ zð20y� 1Þ sinðxpÞ; for 0:05 6 y 6 0:1;
ysk ¼ y;

zsk ¼ z:
We notice that this skewed grid is based on generalizing the two-dimensional Saltzmann grid in the following manner: the
y ¼ 0 surface is the original two-dimensional skewed grid, this grid is additionally skewed with respect to y coordinate. We
note that the y ¼ 0:05 surface is not skewed at all. For this problem we use the polytropic index ðc ¼ 5=3Þ. The initial state is
ðq0; P0;V0Þ ¼ ð1;10�6;0Þ. At the plane x ¼ 0, a unit normal velocity is specified. On all the other boundaries, we set reflective
boundary conditions. The exact solution is a planar shock wave, parallel to the ðy; zÞ plane, that moves at speed 4=3 in the x
direction. The shock wave hits the face x ¼ 1 at time t ¼ 0:75, the density should be equal to 4 in the shocked region.

We perform two computations with our three-dimensional scheme. The first one is done by using a 3D grid which is 2D
skewed, that is, we set only one cell in the y direction and rewrite xsk ¼ xþ ð0:1� zÞ sinðxpÞ. This problem is a sanity check
that corresponds to the 2D Saltzamnn problem. The grid at time t ¼ 0:7 is displayed in Fig. 9 (left). We notice that our scheme
preserves very well the one-dimensional solution. Moreover, as it can be seen in Fig. 8 (left), the location of the shock wave
and shock plateau are in good agreement with the analytical solution. These results demonstrate that our 3D scheme be-
haves similarly with the 2D scheme derived in [21]. The second computation is performed by using the 3D skewed grid de-
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Fig. 11. 3D Sedov problem: density contour (left) and mesh (right) at time t ¼ 1 for the 20� 20� 20 (top) and 40� 40� 40 (bottom) grid.
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6. Conclusion

In this paper, we have presented a multi-dimensional finite volume scheme for Lagrangian hydrodynamics. We have
shown how to derive the discretization of the geometric conservation law (GCL) consistently with the nodes displacement.
Then, to ensure consistency with the GCL discretization and continuity of the kinematic velocity around each node, we have
introduced 2d face pressures located at each node for each simplicial face. These pressures are linked to the kinematic veloc-
ity thanks to half-Riemann problems around each node. The local balance of momentum around each node allows to com-
pute the kinematic velocity by solving a local d� d system and then deduce from it the nodal pressures. Finally, by using the
previous quantities we design linear mappings over each simplicial faces that provides a consistent approximation of the
face fluxes. In this framework, we have derived a scheme that ensures momentum and total energy conservation and satis-
fies a local entropy inequality. Numerical results obtained, in 2D and 3D, with this scheme are in good agreement with the
analytical solutions of the proposed test cases.

In the future, we intend to investigate improvements of the nodal Riemann solver formulation, particularly its depen-
dency to the geometry of mesh. This point is crucial since it is related to the spatial distribution of entropy production.
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